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ABSTRACT 

For a pointed space X, let Aut(X) be the group of pointed homotopy classes of 
pointed self-homotopy equivalences of X and let WI(X) be the normal 
subgroup of Aut(X) consisting of weak identities, that is, elements represented 
by maps weakly homotopic to the identity map. IfXis a path-connected CW- 
space satisfying certain finiteness conditions, then the author has shown 
elsewhere that the quotient group Aut(X)/WI(X) is a residually finite group. 
If, in addition, X supports a homotopy-associative H-space structure, has a 
finite fundamental group, and has finitely generated higher homotopy groups, 
it is shown here that any normal subgroup N of Aut(X) rendering the quotient 
group Aut(X)/N residually finite must contain WI(X). The proof relies on 
establishing an isomorphism between WI(X) and the group Ph(X) of pointed 
homotopy classes of phantom self-maps of X and making a detailed analysis 
of the group-theoretic structure of the latter, following W. Meier and 
A. Zabrodsky. 

A few years ago, I became interested in the group-theoretic behavior of 
the ~automorphism group" Aut(X) of a certain kind of (possibly infinite- 
dimensional) CW-space X. When Xis, in addition, a homotopy-associative H- 
space, I noticed that the set of homotopy classes of phantom self-maps of X, 
Ph(X), entered naturally into the picture and I initiated (in late 1983) a 
correspondence with Alex Zabrodsky, hoping he could tell me something 
about the structure of Ph(X). 

By sheer coincidence, Zabrodsky had been working on refinements and 
consequences of Haynes Miller's theorem proving the Sullivan conjecture 
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and had derived considerable information on the structure of Ph(X, Y), 
the set of homotopy classes of phantom maps from X to Y, under suit- 
able restrictions on X and Y. As a result of our correspondence, it became 
possible to deduce a highly satisfactory supplement to a theorem I had 
discovered asserting the residual finiteness of a certain quotient group 
of Aut(X). 

At that time, it was my hope that we would eventually produce a joint note 
on the results obtained. Unfortunately, as often happens, other matters took 
precedence, time passed and the suggestion to write up a joint paper was never 
made (by either one of us). The present work is my development of the 
essential points of our brief collaboration and will hopefully serve as a fitting 
tribute to a most talented topologist and fine individual. 

§1. Phantom maps: generalities 

Throughout, all spaces will be assumed to be pointed and path-connected 
CW-spaces; maps between spaces will be assumed to be pointed. The set of 
(pointed) homotopy classes of maps from X to Y is written, as usual, as 
[X, YI. 

For u in [X, Y], Ph(X, Y; u) is defined as the set of all v in [X, Y] such 
that v is ~weakly homotopic" to u; that is, ff W is any finite complex and 
f :  W ~  X any map, then u. f ffi v.f. [Here, and elsewhere, the distinction 
between a map and its homotopy class will be blurred whenever it is deemed 
safe to do so.] If u ffi 0, the constant map taking X to the basepoint of Y, 
then Ph(X, Y; u) is written Ph(X, Y) and referred to as the set of (homotopy 
classes of) phantom maps from X to Y. [See [M1], [M2], [M3], [Z2], where 
the notation 0(X, l0 is used instead of Ph(X, Y). Earlier work on the sub- 
jeer, using a somewhat different notion of phantom map, may be found in 
[AWl, [GI.] 

In general, one cannot expect a relationship among the various sets 
Ph(X, Y; u), u in [X, Y]. There is one situation, however, in which there is a 
close relationship among the Ph(X, Y; u). Namely, suppose that Y admits a 
homotopy-associative H-space structure. Then the set [X, Y] is naturally 
furnished with a group structure, which we write additively, even though it is 
generally non-abelian. The proof of the following is easily supplied. 

PROPOSlTXON 1.1. (i) With respect to the indicated group structure on 
[X, Y], the set Ph(X, Y) is a normal subgroup of  IX, Y]. 

(ii) For u in IX, Y], Ph(X, Y; u) coincides with the coset Ph(X, Y) + u. 
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Ph(X, Y; u) has fairly evident functorial properties, which we are content to 
spell out in the case u = 0. Thus, f :  X~ ~)(2 induces f*" IX2, Y] ~ [X~, Y], 
which restricts to 

(1.1) f* :  ah(X2, Y) -~ Ph(X~, Y). 

When Y is a homotopy-associative H-space, f*  and f*  are group homomor- 
phisms. This may be expressed as 

(1.2) (a + fl) . f = a . f + fl . f ,  a, fl in [X2, Y], 

with the three terms a .  f,  ft. f,  (a + fl). f all in Ph(X~, Y) if a, fl are in 
Ph(X2, Y). Also, g:  Y~ -~ Y2 induces g," [X, Y~] ~ [X, Y2], which restricts to 

(1.3) g--~ : Ph(X, Y~)-~Ph(X, Y2). 

When Y~ and Y2 are homotopy-associative H-spaces a n d g  is an H-map, g .  and 
g .  are group homomorphisms. This may be expressed as 

(1.4) g . ( a + f l ) = g . a + g . f l ,  a, f l i n [ X ,  Yd,  g an H-map, 

with the three terms g.  a, g.  fl, g .  (a + p) all in Ph(X, Y~) if a, fl are in 
Ph(X, Yt). 

Let now X = Y. Ph(X, Y; u) may then be abbreviated to Ph(X; u), Ph(X, Y) 
to Ph(X). If u = lx, the identity map of Xto  itself, Ph(X; lx) was written as 
WI(X) in [R] and referred to as the set of weak identities. The set IX, X] has a 
multiplicative semigroup structure arising from the composition of maps. If X 
is a homotopy-associative H-space, giving rise to the additive group structure 
on [X, X] discussed above, there is a left-distributive law 

(1.5) (a + fl) . y = a . 7 + fl . 7 , a, fl, y in [X, X], 

connecting these two binary operations on [X, X] (see (1.2)), but the right- 
distributive law 

(1.6) 7. (a + p) = ~,. a + 7- fl, a, fl, 7 in [X, X], 

is valid only when 7 is an H-map (see (1.4)). 
Both WI(X) and Ph(X) are multiplicative sub-semigroups of [X, X]. In 

fact, 

PROPOSITION 1.2. (i) WI(X) is a normal subgroup o f  the multiplicative 

group o f  units [X, X]* (aka Aut(X)) in [X, X]. 

(ii) Ph(X) is a "two-sided ideal" o f  [X, X] in the sense that, aside f rom 
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being an additive normal subgroup o f  [X, X] in the event X is a homotopy- 

associative H-space, ~). a, a . (~ are in Ph(X) whenever ~ is in Ph(X) and a is 

in IX, X]. 

Observe that the group structure on WI(X) is independent of any H-space 
structure on X; in fact, it is clearly defined even when X admits no H-space 
structure. On the other hand, the group structure on Ph(X) does seem to 
depend on the H-space structure on X. Nevertheless, as will be seen in 
§3, there is, rather surprisingly, an isomorphism from the (additive) group 
Ph(X) to the (multiplicative) group WI(X) given by the one-to-one corres- 
pondence 

-" O + lx, O in Ph(X), 

implicit in Proposition 1.1 (ii), at least if additional restrictions are imposed on 
X. Furthermore, under these same restrictions on X, Ph(X) turns out to 
possess some remarkable group-theoretic properties (§2) enabling us to prove 
the main result (§3). 

§2. Phantom maps: rationalization 

For the remainder of the paper, X and Y will be taken to be nilpotent, of 
finite homotopical type (that is, x,X is finitely generated for n >_- 1) and 
with finite fundamental group. We write Xt0 ) for the rationalization of X, 
r: X ~ Xt0 ) for a rationalization map and X, for the homotopy-fibre of r. Thus 
we have a fibration 

i r 
(2.1) X, , X , X~o). 

Since lqX is finite, rqXo)= 0 and so X, is path-connected. According to 
[HMR; Th. II.2.2], X, is therefore itselfa nilpotent space. The homotopy exact 
sequence associated to (2.1) gives rise to short exact sequences 

Q/Z + . . .  + Q/Z  ~ rt, x ,  ~ zOt,x) ,  n >-_ 1, 

z(It, X) denoting the (finite) torsion subgroup of tt, X; thus the groups rt, X,, 
n >-_ 1 are locallyfinite (countable) groups. 

We will need the following two general lemmas concerning ration- 
alization. 

L~-MMA 2.1. The fibration (2.1) is also, up to homotopy, a cofibration. 

A yet more general result along these lines may be found in [A], where 
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references to earlier work of a similar nature due to R. J. Milgram, 
Z. Wojtkowiak and S. J. Schiffman are given. It may be remarked that 
while the condition that X have finite homotopical type is irrelevant for 
Lemma 2.1, the condition that nlXbe a torsion group is necessary, as well as 
sul~cient. 

L~MMA 2.2. I f  j:  U--* V is a rational homotopy equivalence of nilpotent 
spaces of finite homotopical type, then j , :  [X~o), U] ~ [X~o), V] is a bijection. 
(See [Z2; 1.1.51.) 

For completeness, we sketch a proof of Lemma 2.2. As X~o) is 1-connected, 
we may asume X~o) decomposed as a "rational" cell complex ([HMR; p. 57]). 
Thus, ~¢o) is a wedge VS~o) of rational 2-spheres, ~0~ l is obtained from ~o) by 
attaching a disjoint union of "rational (n + 1)-tens" by means of a 
map VS~o)--" X~o), and X(o) ffi lin] X~). We proceed inductively to show 

j .  : [~o), U]  ~ [X~), V] 

is a bijection. 
Since X~0) is lw, onnected, Uand Vmay also be taken to be 1-connected and 

hence the homotopy-fibre F o f j  is path-connected, nilpotent. For n = 2, we 
have an exact sequence 

J 
- .  [ vs ), F] - -  [ vs ), u]  [ VSgo), v] --, [ VS o), l q  - .  . 

Since n~F is finite for all n _-> 1, 

H"(S~o); x . F )  ffi Hom(H.S~) ,  lr.F) = 0, 

H"+~(S~); lr.+~F) - Ext(H.S~), 7r.+~F) -- 0, n > 1. 

By obstruction theory, [S~), F] -- 0, n >ffi 1. Therefore the case n ffi 2 is settled. 
The inductive step is proved by applying a Five Lemma argument to the 
evident commutative diagram with exact rows 

[VS~, U ] * - [ ~ ,  Vl*-[X~o~', U]~-[VS~ 1, U ] ~ - [ ~ ,  U] 

[VS~}, V]a"- [X~), V] ~- [~(0~ 1, V] a-" [VS(~ 1, V] ~" [~X((0), V]. 

A simple l imit argument then establishes that 

j , :  [X~0), U] ~ [X~0 ), V] 

is a bijection. 
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We turn now to a closer examination of the set Ph(X, Y). The following 
result of Meier and Zabrodsky is crucial ([Z2; 2.1.2.]). 

PROPOSITION 2.1. O is in Ph(X, Y) iff there exists ~ in [X~0), II] such that 

fb=~.r .  

By virtue of Lemma 2.1, there is an exact sequence of sets 

i* 
(2.2) [X, Y] ,----[X, Y] ~ [X<o), Y], e [ZX,, Y], , 

q:  Xc0)---EX, being the "connecting map" in the fibration-cofibration (2.1). 
Proposition 2.1 identifies Ph(X, Y) with the image of r* in (2.2). We study the 
latter when Y is an H-space. 

Being an H-space, Y is rationally equivalent to a product of Eilenberg- 
MacLane spaces K(Z, n). More precisely, let 

K = II K(~Y ,  n), 

where ~ Y  denotes the quotient group 7cnYITOznY). Then there is a rational 
homotopy equivalence j :  Y---K. Furthermore, j may be chosen to be an 
H-map for the given H-space structure on Y and for some (not necessarily 
unique) H-space structure on K -  see [Z1; 4.4.3]. If 

K(o) = II K ( ~ Y ® Q ,  n) 

and p : K ~/~o) is the evident (rationalization) map, then the composition p. j 
serves as a rationalization map r: Y ~ Y(o), which will be used later. 

Now, (2.2) embeds as the top row in a commutative diagram 

IX,, 1,'1 , - - - IX,  Y], " Y] [xx,, Y] 
(2.3) 

IX,, K] ,  IX, K] ,  " [X~0~, K] ,  e [Y_,X,, K]. 

With respect to the given H-space structure on Y and the H-space structure 
"induced" on K, all the maps in (2.3) are homomorphisms of algebraic loops 
(for a definition, see [B]). We wish to show that some of these algebraic loops 
are actually groups, and for this purpose, we need a lemma. 

LEMMA 2.3. r*: [X~o),K]~[X,K] is the trivial map. 

PROOF. As K is a product of K(Z, n)'s it suffices to prove that 
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r* : H"(X(0); Z)---,H"(X; Z) 

is the zero map, n > 0. By the Universal Coefficient Theorem, there is a 
commutative diagram with short exact rows 

(2.4) 
Ext(H,_ iX(o), Z) ~ H"(X(o); Z) --* Hom(H,X(o), Z) 

~r* 
Ext(H,_~X, Z) ~ H"(X; Z) --, Hom(H,X, Z). 

As X is of finite type, Ext(H,_lX(o), Z) is divisible while Ext(H,_ ~X, Z) is 
finite; also, Hom(H,X(0), Z) = 0. Thus r*, in (2.4), is indeed the zero map. 

It follows from Lemma 2.3 that q*: [ZX~, K] ~ [X(0), K], in (2.3), is sur- 
jective. But, ZX, being a suspension, the algebraic loop structure on [ZX,, K] is 
a group structure. In fact, this group structure is independent of the H- 
space structure on K and is abelian. Hence, the algebraic loop structure on 
[Xco ), K] is also an (abelian) group structure, independent of the H-space 
structure of K. 

The map j .  : [X(o), Y]--" [Xt0), K], in (2.3), is both a bijection (Lemma 2.2) 
and a homomorphism of algebraic loops. Thus, the algebraic loop structure on 
[X(o), Y] is actually an (abelian) group structure, independent of the H-space 
structure on Y (whether homotopy-associative or not), and j . :  [X~o), Y] 
IX(o), K] is an isomorphism of groups. We may now state 

TH~ORFM 2.1. Let Y be an H-space. The natural algebraic loop structure 
on Ph(X, Y) (compare Proposition 1.1(i)) is a group structure which is 
abelian, independent of the H:space structure on Y and divisible (compare 
[Z2; 2.1.4]). 

PROOF. We have already noted (Proposition 2.1 et seq.) the identification 

Ph(X, Y) ~ r* [X(0), Y]. 

Chasing around the diagram (2.3), we find 

(2.5) r*[Xt0), Y] ~ [Xto), Y]Iq*[YX,, Y] 

(2.6) [X(o), K]Iq*j.[ZX,, Y]. 

All the assertions of Theorem 2.1, except for the divisibility, follow from (2.5). 
To obtain the divisibility statement, impose the standard H-space structure on 
K and identify 
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[X(0), K] m ]-I Hn(X(o); It',Y) 

II Ext(H,_,X(0), n;Y). 

The latter group, and hence any quotient group thereof, is certainly divisible, 
so (2.6) completes the proof. 

Imposing further conditions on X, Y leads to more precise information on 
Ph(X, Y). 

THEOREM 2.2 ([Z2; 4.1.]). Suppose that X has only finitely many non-zero 
homotopy groups and that (the H-space) Y has the homotopy type of  a finite 
complex. Then 

(i) Ph(X, Y) ------- II Ext(Hn_ ,X~o), It~Y); 
(ii) I f  there is an integer n for which both HnX and It~+~Y have Z-rank > 1, 

then Ph(X, Y) is uncountable. I f  no such integer n exists, then Ph(X, Y) = 0 
(compare [M2; Prop. 2]). 

PROOF. For part (i), it suffices, by the proof of Theorem 2.1 (see (2.6)), to 
show that [ZX,, Y] = 0, given the additional conditions on X, Y. But this 
follows from Zabrodsky's extension of Haynes Miller's theorem, as explained 
in [Z2; 3.2]. 

Part (ii) follows readily from part (i), using the calculation 

Ext(Q, Z) --~ R. 

REMARK. It is interesting to observe that Theorem 2.2 falls completely 
apart if the assumption on the finiteness of ItlX is removed. For instance, if 
X = S l × S I and Y = S 3, then Ph(X, Y) = 0 while II Ext(H~ _ iX(0), It'Y) ~ R. 

§3. Phantom maps and weak identifies 

In this section, we take X = Y and require X to be a homotopy-associative 
H-space. Recall (Proposition 1. l(ii)) the bijection Ph(X)---WI(X) given by 

~--" ~ + 1x, 

where " + "  is the binary operation induced by the H-space structure on X. 

THEOREM 3.1. The bijection Ph(X)---WI(X)just described is an isomor- 
phism of  groups. 

PROOF. For ~,  ~2 in Ph(X), we must compute the producl 
(~ + 1). (~2 .+ 1). (We abbreviate lx to 1.) First use Proposition 2.1 to write 
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0i -- ~i. r, i = 1, 2. 

Recall, from §2, that r may be chosen to be of the form 

X J , K  P ,K-to)=X(o). 

Now, 

(Oi + 1). (02 + l) ---- 01 

f f i  t~l 

--~, { 0 + r } + ( 0 2 + 1 )  

=01 + 0 2 +  1, 

and Theorem 3.1 is proved. 

(02 + 1) + (02 + 1) (see (1.5)) 

r) .  (~2. r + 1) + (02 + 1) 

{r. (~2. r + 1)} + (02 + 1) 

{r.~2. r + r} + (~2 + 1) 

{p.J.  r + r} +(02+ 1) 

(J. ~2. r = 0 by Lemma 2.3) 

(see (1.6); r is an H-map) 

REMARKS. (1) The calculations in Theorem 3.1 take place in [X, X], not in 
Ph(X). The latter is a group even if the //-space structure on X is not 
homotopy-associative but the former will not be a group in general unless X is 
assumed homotopy-associative. 

(2) A portion of the above calculation shows that Ph(X) is nilpotent of class 
2 in the sense that the product of any 2 elements in Ph(X) is 0. The proof 
depends on being able to factor r as p .  j with the target of j  being a product of 
K(Z, n)'s. Hence, this nilpotency result remains valid even if X is only 
assumed to be a "rational//-space." Does it continue to hold even more 
generally? 

Returning to the situation in Theorem 3.1, we see that 0 n = 0, n > 2, for any 
0 in Ph(X). Thus the formal exponential expression exp(0) -- EOn/n! reduces 
to 1 + 0 (which may differ from 0 + 1 since [X, X], unlike Ph(X), need not be 
abelian). The isomorphism in Theorem 3.1 may therefore be described as an 
"anti-exponential" isomorphism. 

Theorem 3.1 leads to an interesting supplement to [R; Th. 4.4], which asserts 
that, under rather general finiteness conditions on X (all nilpotent spaces of 
finite homotopical type are included), the quotient group Aut(X)/WI(X) is a 
residually finite group. 
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THEOREM 3.2. I f  X is a homotopy-associative H-space o f  finite homo- 

topical type and with finite fundamental  group, and i f  N is any normal sub- 
group o f  Aut(X) yielding a residually finite quotient group Aut(X)/N, then 

N D WI(X). 

PROOF. Virtually by the definition of residual finiteness, the group 
Aut(X) /N embeds into a Cartesian product of finite groups II Fa. Consider the 
composition 

(3.1) WI(X) ~ md~,io~ , Aut(X) p~oj~o~, Aut(X)/N ~ ~ ,  II F~. 

By Theorems 2.1 and 3.1, WI(X) is (abelian) divisible. Therefore, each r ,  
being finite, (3.1) is the trivial map and so WI(X) c N. 

QUESTION. Does Theorem 3.2 continue to hold for more general X?. 

We conclude by giving, an example of a space T of the type described in 
Theorem 3.2 in which WI(T) is uncountable. First observe that a map 
f :  X --  Y induces a self-map X X Y ~ X X Y defined by 

(x, y)-~ (0, f(x)). 

There results an injective map 

[X, Y ] ~ [ X  X Y, X X Y] 

which, in fact, restricts to an (injective) map 

Ph(X, Y ) ~  Ph(X X Y). 

Take X = K(Z ,  2) -- CP ~°, Y = S 3. These two spaces satisfy the conditions 
of  Theorem 2.2 and are both homotopy-associative H-spaces (using the 
standard H-space structures). Furthermore, 

H2X -~ Z -~ n 3 Y. 

By Theorem 2.2, Ph(X, Y) is uncountable (compare [GI, [M2I, [M3I), hence 
also Ph(X × Y) is uncountable. It follows that WI(X × Y) is itself uncoun- 
table; X X Y is the promised space T. 
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